首页> 外文OA文献 >Probability Distributions from Riemannian Geometry, Generalized Hybrid Monte Carlo Sampling and Path Integrals
【2h】

Probability Distributions from Riemannian Geometry, Generalized Hybrid Monte Carlo Sampling and Path Integrals

机译:黎曼几何,广义混合蒙特卡洛采样和路径积分的概率分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When considering probabilistic pattern recognition methods, especially methods based on Bayesian analysis, the probabilistic distribution is of the utmost importance. However, despite the fact that the geometry associated with the probability distribution constitutes essential background information, it is often not ascertained. This paper discusses how the standard Euclidian geometry should be generalized to the Riemannian geometry when a curvature is observed in the distribution. To this end, the probability distribution is defined for curved geometry. In order to calculate the probability distribution, a Lagrangian and a Hamiltonian constructed from curvature invariants are associated with the Riemannian geometry and a generalized hybrid Monte Carlo sampling is introduced. Finally, we consider the calculation of the probability distribution and the expectation in Riemannian space with path integrals, which allows a direct extension of the concept of probability to curved space.
机译:当考虑概率模式识别方法时,尤其是基于贝叶斯分析的方法时,概率分布至关重要。但是,尽管事实是与概率分布相关的几何构成了基本的背景信息,但通常无法确定。本文讨论了在分布中观察到曲率时应如何将标准欧几里得几何推广到黎曼几何。为此,定义了弯曲几何形状的概率分布。为了计算概率分布,将由曲率不变量构造的拉格朗日和哈密顿与黎曼几何相关联,并引入了广义混合蒙特卡洛采样。最后,我们考虑使用路径积分计算黎曼空间中的概率分布和期望值,这可以将概率概念直接扩展到弯曲空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号